水果蔬菜数据。包含90483张图,131个种类,100像素。
医学图像数据集。MedMNIST v2 是一个大规模的 2D 和 3D 医学图像分类数据集,包含 12 个 2D 数据集和 6 个 3D 数据集,其中 2D 数据集有 708069 张图片,3D 数据集有 10214 张图片。数据集包含多种模态(X 光片、视网膜 OCT、超声、CT 等)、 多种任务(多分类、二分类、多标签、有序回归), 数据集规模从百量级到十万量级不等;
第一视角视频数据集。Facebook和NUS、MIT等高校联合推出3000小时的第一视角视频数据集Ego4D
超大图片集合。谷歌发布的图片数据库Open Images,包含了900万标注数据,标签种类超过6000种。谷歌在官方博客中写到,这比只拥有1000个分类的ImageNet 更加贴近实际生活。对于想要从零开始训练计算机视觉模型的人来说,这些数据远远足够了。
手写数字图片。训练集样本60,000个,测试集样本10,000个。由来自 250 个不同人手写的数字构成, 其中 50% 是高中学生, 50% 来自人口普查局的工作人员。
自动驾驶数据。是目前国际上最大的自动驾驶场景下的计算机视觉算法评测数据集。KITTI包含市区、乡村和高速公路等场景采集的真实图像数据,每张图像中最多达15辆车和30个行人,还有各种程度的遮挡与截断。
32像素图片。CIFAR-10包含了10个种类的图片,包括飞机,汽车,鸟.....图片是彩色的。总共60,000个样本。CIFAR-100包含了100个种类,但是总共也只有60,000个样本。